

the ceph distributed storage system

sage weil scale 10x – january 22, 2012

hello

- why you should care
- what is it, what it does
- how it works, how you can use it
 - architecture
 - objects
 - recovery
 - block devices
 - file system
- who we are, why we do this

why should you care about another storage system?

requirements, time, money

requirements

- diverse storage needs
 - object storage (RESTful or low-level)
 - block devices (for VMs) with snapshots, cloning
 - shared file system with POSIX, coherent caches

scale

- terabytes, petabytes. exabytes?
- heterogeneous hardware
- reliability and fault tolerance

time

- ease of administration
- no manual data migration, load balancing
- painless scaling
 - expansion and contraction
 - seamless migration

money

- low cost per gigabyte
- no vendor lock-in

- software solution
 - run on commodity hardware
- open source

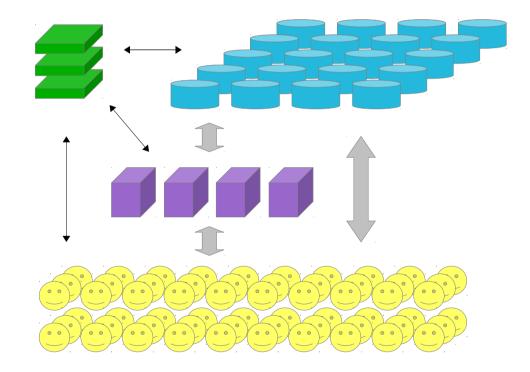
what is ceph?

unified storage system

- objects
 - small or large
 - multi-protocol
- block devices
 - snapshots, cloning
- files
 - cache coherent
 - snapshots
 - usage accounting

open source

- LGPLv2
 - copyleft
 - free to link to proprietary code
- no copyright assignment
 - no dual licensing
 - no "enterprise-only" feature set
- active community
- commercial support


distributed storage system

- data center (not geo) scale
 - 10s to 10,000s of machines
 - terabytes to exabytes
- fault tolerant
 - no SPoF
 - commodify hardware
 - ethernet, SATA/SAS, HDD/SSD
 - RAID, SAN probably a waste of time, power, and money

architecture

- monitors (ceph-mon)
 - 1s-10s, paxos
 - lightweight process
 - authentication, cluster membership, critical cluster state
- object storage daemons (ceph-osd)
 - 1s-10,000s
 - smart, coordinate with peers
- clients (librados, librbd)
 - zillions
 - authenticate with monitors, talk directly to ceph-osds
- metadata servers (ceph-mds)
 - 1s-10s
 - build POSIX file system on top of objects

rados object storage model

pools

- 1s to 100s
- independent namespaces or object collections
- replication level, placement policy

objects

- trillions
- blob of data (bytes to gigabytes)
- attributes (e.g., "version=12"; bytes to kilobytes)
- key/value bundle (bytes to gigabytes)

rados object API

- librados.so
 - C, C++, Python, Java. shell.
- read/write (extent), truncate, remove; get/set/remove xattr or key
 - like a file or db file
- efficient copy-on-write clone
- atomic compound operations/transactions
 - read + getxattr, write + setxattr
 - compare xattr value, if match write + setxattr
- classes
 - load new code into cluster to implement new methods
 - calc sha1, grep/filter, generate thumbnail
 - encrypt, increment, rotate image
- watch/notify
 - use object as communication channel between clients (locking primitive)

object storage

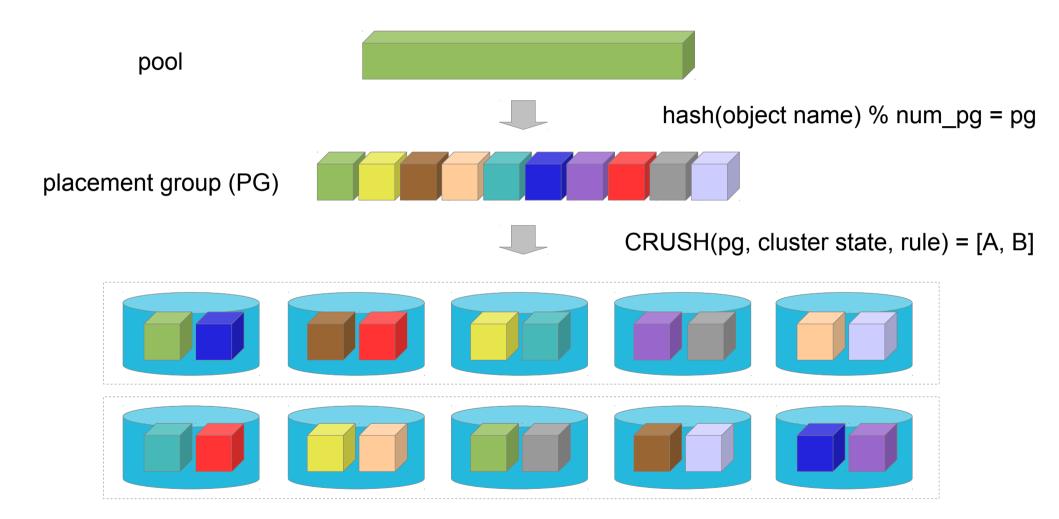
- client/server, host/device paradigm doesn't scale
 - idle servers are wasted servers
 - if servers don't coordinate, clients must
- ceph-osds are intelligent storage daemons
 - coordinate with peers over TCP/IP
 - intelligent protocols; no 'IP fail over' or similar hacks
- flexible deployment
 - one per disk
 - one per host
 - one per RAID volume
- sit on local file system
 - btrfs, xfs, ext4, etc.

why we like btrfs

- pervasive checksumming
- snapshots, copy-on-write
- efficient metadata (xattrs)
- inline data for small files
- transparent compression
- integrated volume management
 - software RAID, mirroring, error recovery
 - SSD-aware
- online fsck
- active development community

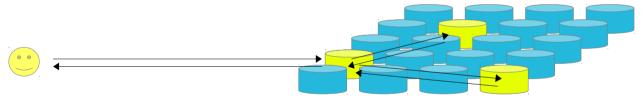
data distribution

- all objects are replicated N times
- objects are automatically placed, balanced, migrated in a dynamic cluster
- must consider physical infrastructure
 - ceph-osds on hosts in racks in rows in data centers
- three approaches
 - pick a spot; remember where you put it
 - pick a spot; write down where you put it
 - calculate where to put it, where to find it



CRUSH

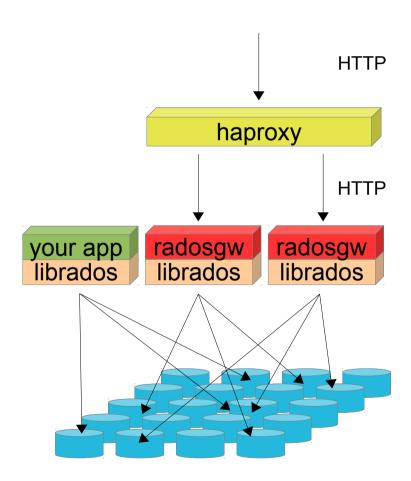
- pseudo-random placement algorithm
 - uniform, weighted distribution
 - fast calculation, no lookup
- placement rules
 - in terms of physical infrastructure
 - "3 replicas, same row, different racks"
- predictable, bounded migration on changes
 - N → N + 1 ceph-osds means a bit over 1/Nth of data moves


object placement

replication

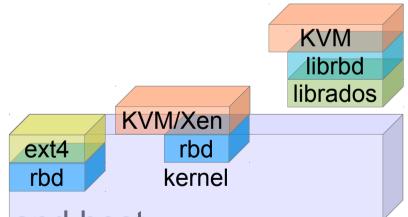
- all data replicated N times
- ceph-osd cluster handles replication
 - client writes to first replica

- reduce client bandwidth
- "only once" semantics
- dual in-memory vs on-disk acks on request


recovery

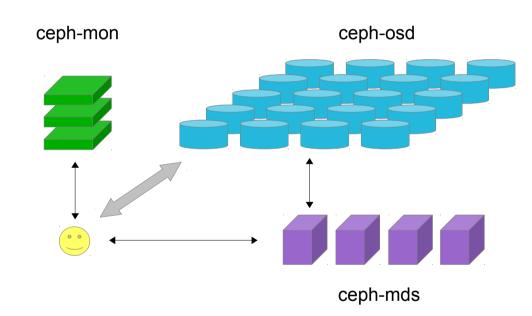
- dynamic cluster
 - nodes are added, removed
 - nodes reboot, fail, recover
- "recovery" is the norm
 - "map" records cluster state at point in time
 - ceph-osd node status (up/down, weight, IP)
 - CRUSH function specifying desired data distribution
 - ceph-osds cooperatively migrate data to achieve that
- any map update potentially triggers data migration
 - ceph-osds monitor peers for failure
 - new nodes register with monitor
 - administrator adjusts weights, mark out old hardware, etc.

librados, radosgw

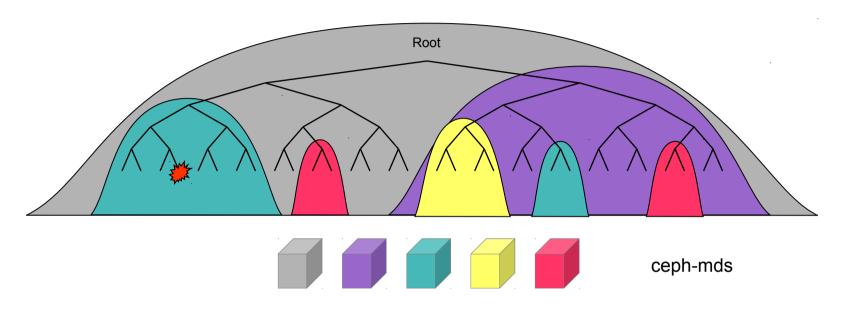

- librados
 - direct parallel access to cluster
 - rich API
- radosgw
 - RESTful object storage
 - _ S3, Swift APIs
 - proxy HTTP to rados
 - ACL-based security for the big bad internet

rbd - rados block device

- replicated, reliable, high-performance virtual disk
 - striped over objects across entire cluster
 - thinly provisioned, snapshots
 - image cloning (real soon now)
- well integrated
 - Linux kernel driver (/dev/rbd0)
 - qemu/KVM + librbd
 - libvirt, OpenStack
- sever link between virtual machine and host
 - fail-over, live migration


ceph distributed file system

- shared cluster-coherent file system
- separate metadata and data paths
 - avoid "server" bottleneck inherent in NFS etc
- ceph-mds cluster
 - manages file system hierarchy
 - redistributes load based on workload
 - ultimately stores everything in objects
- highly stateful client sessions
 - lots of caching, prefetching, locks and leases


an example

- mount -t ceph 1.2.3.4:/ /mnt
 - 3 ceph-mon RT
 - 2 ceph-mds RT (1 ceph-mds to -osd RT)
- . cd /mnt/foo/bar
 - 2 ceph-mds RT (2 ceph-mds to -osd RT)
- ls -al
 - open
 - readdir
 - _ 1 ceph-mds RT (1 ceph-mds to -osd RT)
 - stat each file
 - close
- cp * /tmp
 - N ceph-osd RT

dynamic subtree partitioning

- efficient
 - hierarchical partition preserve locality
- dynamic
 - daemons can join/leave
 - take over for failed nodes

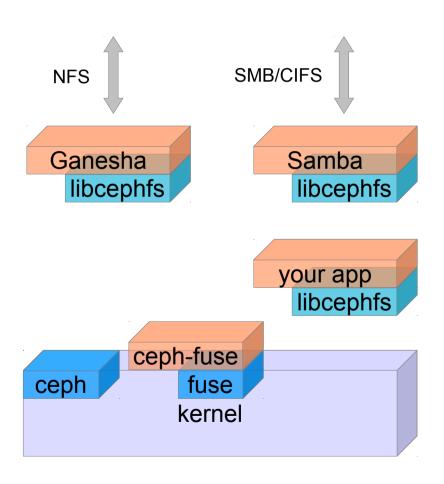
- scalable
 - · arbitrarily partition metadata
- adaptive
 - move work from busy to idle servers
 - replicate hot metadata

recursive accounting

- ceph-mds tracks recursive directory stats
 - , file sizes
 - . file and directory counts
 - . modification time
- virtual xattrs present full stats
- efficient

```
$ Is -alSh | head
total 0
                             9.7°C 2011-02-04 15:51.
drwxr-xr-x 1 root
                      root
                             9.7℃ 2010-12-16 15:06 ..
drwxr-xr-x 1 root
                      root
drwxr-xr-x 1 pomceph
                         pg4194980 9.6  2011-02-24 08:25 pomceph
drwxr-xr-x 1 mcg test1
                         pg2419992 236 2011-02-02 08:57 mcg test1
drwx--x--- 1 luko
                      adm
                               196 2011-01-21 12:17 luko
drwx--x--- 1 eest
                      adm
                               146 2011-02-04 16:29 eest
                         pg2419992 3.06 2011-02-02 09:34 mcg test2
drwxr-xr-x 1 mcg test2
                                 1.56 2011-01-18 10:46 fuzyceph
drwx--x--- 1 fuzyceph
                        adm
drwxr-xr-x 1 dallasceph
                         pg275 59630 2011-01-14 10:06 dallasceph
```


snapshots


- volume or subvolume unusable at petabyte scale
 - snapshot arbitrary subdirectories
- simple interface
 - hidden '.snap' directory
 - no special tools

```
$ mkdir foo/.snap/one # create snapshot
$ ls foo/.snap
one
$ ls foo/bar/.snap
_one_1099511627776 # parent's snap name is mangled
$ rm foo/myfile
$ ls -F foo
bar/
$ ls -F foo/.snap/one
myfile bar/
$ rmdir foo/.snap/one # remove snapshot
```


multiple protocols, implementations

- Linux kernel client
 - mount -t ceph 1.2.3.4://mnt
 - export (NFS), Samba (CIFS)
- ceph-fuse
- libcephfs.so
 - your app
 - Samba (CIFS)
 - Ganesha (NFS)
 - Hadoop (map/reduce)

can I deploy it already?

- rados object store is stable
 - librados
 - radosgw (RESTful APIs)
 - rbd rados block device
 - commercial support in 1-3 months
- file system is not ready
 - feature complete
 - suitable for testing, PoC, benchmarking
 - needs testing, deliberate qa effort for production

why we do this

- limited options for scalable open source storage
 - nexenta
 - orangefs, lustre
 - glusterfs
- proprietary solutions
 - marry hardware and software
 - expensive
 - don't scale (well or out)
- we can change the industry

who we are

- created at UC Santa Cruz (2007)
- supported by DreamHost (2008-2011)
- spun off as new company (2012)
 - downtown Los Angeles, downtown San Francisco
- growing user and developer community
 - Silicon Valley, Asia, Europe
 - Debian, SuSE, Canonical, RedHat
 - cloud computing stacks
- we are hiring
 - C/C++/Python developers
 - sysadmins, testing engineers

http://ceph.newdream.net/

